Intelligent Identification of Fires in Ship Compartments Using a Bayesian Network
نویسندگان
چکیده
Fire is always a severe threat to ship safety and survival. To prevent the spread of a fire and eliminate serious accidental consequences, it is imperative for commanders to promptly identify the size and type of the fire so as to take rapid and effective firefighting action. In this study, the architectural design of an advanced ship fire identification system (SFIS) is presented that makes timely and critical decision support for selecting suitable suppression methods and firefighting tactics. Based on a Bayesian network (BN), a novel intelligent identification model that is capable of identifying small, medium or large fires and distinguishing between a solid fire and a fuel oil fire is proposed. The results indicate the effectiveness of the proposed model as well as its robustness during the failure of one fire sensor. The model can be integrated into damage control systems (DCSS) to further enhance the situational awareness of the damage and assist commanders in prompt decision-making by allocating the most efficient firefighting equipment and crew.
منابع مشابه
Intelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملOn the use of multi-agent systems for the monitoring of industrial systems
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...
متن کاملElderly Daily Activity-Based Mood Quality Estimation Using Decision-Making Methods and Smart Facilities (Smart Home, Smart Wristband, and Smartphone)
Due to the growth of the aging phenomenon, the use of intelligent systems technology to monitor daily activities, which leads to a reduction in the costs for health care of the elderly, has received much attention. Considering that each person's daily activities are related to his/her moods, thus, the relationship can be modeled using intelligent decision-making algorithms such as machine learn...
متن کاملاستفاده از آنتروپی شانون در پیشپردازش ورودی شبکه بیزین جهت مدلسازی سریهای زمانی
Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...
متن کامل